A group of multidisciplinary researchers, we have the common research goal of preventing biofilm mediated infections that may arise following the use of an implanted medical device.
Antimicrobial resistance (AMR) occurs when administered antibiotics do not result in eradication of infection. Elevated tolerance to antimicrobials is a property of microorganisms when growing as biofilms and this frequently occurs on the surfaces of implanted medical devices.
Our approach is to present novel anti-biofilm chemistries on the surfaces of biomaterials to generate colonisation resistant materials (CRMs). CRMs will inhibit the attachment or kill adherent microorganisms, thereby preventing viable biofilms formation. A range of antimicrobials, tailored by flexible syntheses can also be incorporated into the bulk matrix of biomaterials to facilitate controlled and stimulated release.
A further aspect of our research explores electromagnetic radiation to disrupt established biofilms and stimulate release of our antimicrobial actives.
Research
About biofilms
Biofilms can be defined as microbial communities that are mostly attached to solid substrates with the microorganisms being embedded in a self-produced extracellular polymeric substance (EPS). Biofilms are highly resistant to external threats and unsurprisingly are the preferred form of microbial growth in the natural environment.
Meet the team
Lead researcher
Professor David Williams
- williamsdd@cardiff.ac.uk
- +44 (0)2922510654
Academic staff
Dr Nancy Dervisi
- dervisia@cardiff.ac.uk
- +44 (0)29 2087 4081
Professor Ian Fallis
- fallis@cardiff.ac.uk
- +44 (0)29 2087 5976
Dr Melanie Wilson
- wilsonmj@cardiff.ac.uk
- +44 29207 42548
Dr Jonathan Lees
- leesj2@cardiff.ac.uk
- +44 (0)29 2087 4318
Professor Adrian Porch
- porcha@cardiff.ac.uk
- +44 (0)29 2087 5954
Publications
- Nishio Ayre, W. et al. 2016. A novel liposomal drug delivery system for PMMA bone cements. Journal of Biomedical Materials Research Part B: Applied Biomaterials 104 (8), pp.1510-1524. (10.1002/jbm.b.33488)
- Imtiaz, A. et al. 2015. An integrated continuous class-F-1 mode power amplifier design approach for microwave enhanced portable diagnostic applications. IEEE Transactions on Microwave Theory and Techniques 63 (10), pp.3007-3015. (10.1109/TMTT.2015.2472417)
- Jordan, R. P. C. et al. 2015. Development of an antimicrobial urinary catheter to inhibit urinary catheter encrustation. Microbiology Discovery 3 (1) 1. (10.7243/2052-6180-3-1)
- Almalioti, F. et al. 2013. Convenient syntheses of cyanuric chloride-derived NHC ligands, their Ag(i) and Au(i) complexes and antimicrobial activity. Dalton Transactions 42 (34), pp.12370-12380. (10.1039/c3dt51400e)
Schools
Next steps
Research that matters
Our research makes a difference to people’s lives as we work across disciplines to tackle major challenges facing society, the economy and our environment.
Postgraduate research
Our research degrees give the opportunity to investigate a specific topic in depth among field-leading researchers.
Our research impact
Our research case studies highlight some of the areas where we deliver positive research impact.