Skip to main content

A group of multidisciplinary researchers, we have the common research goal of preventing biofilm mediated infections that may arise following the use of an implanted medical device.

Antimicrobial resistance (AMR) occurs when administered antibiotics do not result in eradication of infection. Elevated tolerance to antimicrobials is a property of microorganisms when growing as biofilms and this frequently occurs on the surfaces of implanted medical devices.

Our approach is to present novel anti-biofilm chemistries on the surfaces of biomaterials to generate colonisation resistant materials (CRMs). CRMs will inhibit the attachment or kill adherent microorganisms, thereby preventing viable biofilms formation. A range of antimicrobials, tailored by flexible syntheses can also be incorporated into the bulk matrix of biomaterials to facilitate controlled and stimulated release.

A further aspect of our research explores electromagnetic radiation to disrupt established biofilms and stimulate release of our antimicrobial actives.

Research

About biofilms

Biofilms can be defined as microbial communities that are mostly attached to solid substrates with the microorganisms being embedded in a self-produced extracellular polymeric substance (EPS). Biofilms are highly resistant to external threats and unsurprisingly are the preferred form of microbial growth in the natural environment.

Next steps

academic-school

Research that matters

Our research makes a difference to people’s lives as we work across disciplines to tackle major challenges facing society, the economy and our environment.

microchip

Postgraduate research

Our research degrees give the opportunity to investigate a specific topic in depth among field-leading researchers.

icon-chat

Our research impact

Our research case studies highlight some of the areas where we deliver positive research impact.